The First Total Syntheses of Enantiomerically Pure Naturally Occuring Ellagitannins Gemin D and its Regioisomer Hippomanin A

Karamali Khanbabaee*, Kerstin Lötzerich, Markus Borges, and Mathias Großer

Paderborn, Universität-GH, Fachbereich Chemie und Chemietechnik

Received June 26th, 1998, respectively October 22nd, 1998

Keywords: Glycosides, Natural products, Phase-transfer catalysis, Ellagitannins

Abstract. The total syntheses of naturally occuring ellagitannins gemin D (1) and its regioisomer hippomanin A (2) are reported. In addition, the phase-transfer catalyzed benzylation reaction of the 2,3-glucopyranoside diols 3-7 is described. Our studies have illustrated the influence of the structure of 2,3-glucopyranoside diols on the regioselectivity of the phase-transfer catalyzed benzylation at their free 2,3-OH groups. We could show, that both phase-transfer catalyzed benzylations of 2,3-glucopyranoside diols using tetrabutylammonium hydrogensulfate (Bu₄NHSO₄) or using tetrabutylammonium iodide (Bu_4NI) disfavour the formation of the corresponding 3-*O*-monobenzylated products and preferentially give the 2-*O*-monobenzylated products. However, the ratio of the generated 2- *versus* 3-*O*-mono- and 2,3-dibenzylated products from these reactions also strongly depends upon the nature of the starting materials. The glucopyranosides **3** and **4** are the first examples, which allow the completely regioselective monobenzylation at the 2-OH positions by a phase-transfer catalyzed reaction.

The ellagitannin gemin D (1) [1, 2] and its regioisomer hippomanin A (2) [3] belong to a large family of polyphenolic natural products, obtained by extraction from a variety of higher plants and collectively named as tannins [4]. It has been shown that tannins exhibit a wide spectrum of biological effects [5]. Gemin D (1), for example, possesses antitumor [6] and anti-HIV [7] activities. The chemical structures of gemin D (1) and hippomanin A (2) were assigned as the 3-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-D-glucopyranose (1) [8, 9] and the 2-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-Dglucopyranose (2) [10, 11], respectively.

Our planned convergent syntheses of the natural products gemin D (1) and hippomannin A (2) involve the construction of monoacylated compounds 18 and 19 *via* an esterification reaction of the benzyl-protected gallic acid 17 with the suitably protected D-glucopyranoside derivatives 11 and 12, in which only one OH group either at C-2 or at C-3 is unprotected.

A literature research for the 2-O-monoalkylation of the 2,3-glucopyranoside diols to synthesize such D-glucopyranoside derivatives with a free OH group at their C-3 revealed that several strategies have been employed so far. These include the control of the reaction time, or the application of an equimolar amount of alkylating agent or base [12]. A phase-transfer catalyzed regioselective 2-O-monobenzylation reaction of 2,3-glucopyranoside diols using tetrabutylammonium hydrogensulfate ($Bu_4 NHSO_4$), has been developed by Garegg *et al*. [13]. However, this method led to the preferred formation of the 2-O-monobenzylated products with a considerable amount of the corresponding 3-O-mono and 2,3-dibenzylated compounds [13]. For example, the benzylation reaction of the glucopyranoside diol 6 led to the formation of a mixture of the corresponding 2,3-O-dibenzylated glucopyranoside (7%), 2-O-benzylated derivative 13 (50%) and 3-O-benzylated compound 14 (20%). The benzylation of the glucopyranoside diol 7 also gave a mixture of the corresponding 2,3-O-dibenzylated glucopyranoside (6%), 2-O-benzylated derivative **15** (54%) and 3-O-benzylated compound **16** (20%). As part of an ongoing program aimed at the synthesis of several enantiopure ellagitannins, a more practical route to the glucopyranosides with a free OH group at their C-3 was considered desirable. Here we report on the syntheses of the natural products gemin D (1), hippomannin A (2) based on benzylation of the 2,3-glucopyranoside diols 3–7 using tetrabutylammonium iodide (Bu₄NI) instead of Bu₄NHSO₄ as phase-transfer catalyst.

First, we investigated the benzylation reaction of the 2,3-glucopyranoside diol **3** using Bu_4NI as the phasetransfer catalyst. This reaction led to the formation of the 2-O-monobenzylated product 8 in a yield of 83% together with small amounts (5%) of dibenzylated product 9 (Tab. 1). None of the corresponding 3-O-monobenzylated product was detectable during this reaction. In addition, we investigated the benzylation reaction of other 2,3-glucopyranoside diols in order to find out the scope and limitation of this method (Tab. 1). The benzylation reaction of 2,3-glucopyranoside diol 4 exclusively gave the 2-O-monobenzylated product 10 in 72% yield. From 2,3-glucopyranoside diol 5 as the starting material, however, this reaction resulted in the formation of both regioisomers 11 and 12, which could not be separated by chromatography on silica gel. The structures and the ratio of both regioisomers 11 and 12 were determined by comparison of the chemical shifts and the intensities of their ¹H NMR signals with those pub-

Table 1	Partial	Benzylation	of Gluco	pyranoside	Diols

Starting material	Ether product	Yield (%)	$[\alpha]_{\rm D}$ (degrees)	<i>m.p.</i> (°C)	Ref.
Ph O HO HO HO NO ₂					
<i>o</i> -Nitrobenzyl 4,6- <i>O</i> -benzylidene- β-D-glucopyranoside (3) [16, 17]	2-benzyl 8 2,3-dibenzyl 9	83 5	- 27 - 32	152 - 153 139 - 140	s. exp. s. exp.
Ph O O HO HO HO					
Phenyl 4,6-O-benzylidene- β -D-glucopyranoside (4) (Aldrich)	2-benzyl 10 2,3-dibenzyl	72 trace	- 24 -	138 – 139 –	s. exp. [18]
Ph O O O OBn HO HO					
Benzyl 4,6-O-benzylidene- β -D-gluco pyranoside (5) [19, 20]	2-benzyl 11 3-benzyl 12 2,3-dibenzyl	55 19 trace	- - -		[14, 15] [15] [19, 20]
Ph 0 0 HO OMe					
Methyl 4,6-O-benzylidene- β -D-glucopyranoside (6) [21, 22]	2-benzyl 13 3-benzyl 14 2,3-dibenzy	56 20 trace	- 28 - 47 -	125 - 126 188 - 189 -	[13, 23, 24] [13, 23, 24] [13, 23]
Ph O O HO HO OMe					
Methyl 4,6-O-benzylidene-α-D- glucopyranoside (7) (Lancaster)	2-benzyl 15 3-benzyl 16 2,3-dibenzyl	50 28 trace	+ 34 + 79 -	131 – 132 187 – 188 –	[25, 13] [25, 13] [25, 13]

lished for the glucopyranosides **11** [14, 15] and **12** [15]. The benzylation reaction of glucopyranoside diols **6** and **7** also produced a mixture of both corresponding monobenzylated regioisomers **13**, **14** and **15**, **16** with a negligible amount of the corresponding dibenzylated products.

In fact, the 2,3-glucopyranoside diols **3** and **4** are the first examples, which allow a completely regioselective phase-transfer catalyzed benzylation of their 2-OH, without accompanying formation of the corresponding 3-*O*-monobenzylated regioisomers.

The results of the benzylation reactions on 2,3-glucopyranoside diols 3-7 are summarized in Table 1.

For comparison of the results of the benzylation reaction of 2,3-glucopyranoside diols using Bu₄NI with those based on the use of Bu_4NHSO_4 , we also benzylated the 2,3-glucopyranoside diol 3 using Bu₄NHSO₄ as the phase-transfer catalyst. This benzylation reaction led to the formation of monobenzylated product 8 in a yield of 79% together with a small amount of the corresponding dibenzylated product 9 in 7% yield. The results for the benzylation reactions of 3, 6 and 7 using Bu_4NHSO_4 are similar to those obtained for the benzylation reaction of the glucopyranoside 3, 6 and 7 using Bu_4NI as the phase-transfer catalyst. Obviously, both phase-transfer catalyzed benzylation reactions of the 2,3-glucopyranosides preferentially form the corresponding 2-O-monobenzylated products, while the formation of the corresponding 3-O-monobenzylated regioisomers is prevented. Nevertheless, these similarities indicate, that the ratio of generated 2-O- versus 3-O-monobenzylated regioisomer depends not only on the nature of the used catalyst, but also strongly on the nature of the starting glucopyranosides.

Accordingly, we decided to acylate the mixture of both regioisomers **11** and **12** with the benzyl-protected gallic acid **17** [26] to assemble the frameworks of **1** and **2**. The acylation reaction of both regioisomers **11** and **12** with the benzyl-protected gallic acid **17** [26] in the presence of 4-(dimethylamino)pyridine (DMAP) and

1,3-dicyclohexylcarbodiimide (DCC) afforded a mixture of the monoacylated compounds **18** and **19**, respectively (Scheme 1).

The resulting regioisomers 18 and 19 were then separated by chromatography and converted into the corresponding diols 20 and 23 by cleavage of the benzylidene acetal using 2N HCl in THF (Scheme 2). The esterification reaction of the racemic hexabenzyloxydiphenic acid (21) [26] with diols 20 and 23 proceeded diastereoselectively to produce both diastereoisomers 22 and 24, respectively. The absolut configuration of the obtained diastereoisomers 22 and 24 were determined to be (S) after completion of the syntheses of both naturally occuring ellagitannins gemin D (1) and hippomanin A (2) by hydrogenolysis of the benzyl groups of the diastereoisomers 22 and 24. All spectroscopic data of the synthetic ellagitannins 1 and 2 are in agreement with those published for the natural products gemin D (1) and hippomanin A (2), respectively.

We thank the Deutsche Forschungsgemeinschaft for financial support (Totalsynthese 21/2-1), the Universität-GH Paderborn for the donation of a doctoral fellowship to K. Lötzerich and Professor K. Krohn for his helpful support.

FULL PAPER

Experimental

Analytical instruments and general methods were described previously [26].

Monobenzylation of Glucopyranoside Diols 3–7 (General Method A)

A mixture of the respective glucopyranoside diol (1.50 mmol), tetra-*n*-butylammonium iodide (*n*-Bu₄NI) (0.50 mmol, 0.33 eq), freshly distilled benzyl bromide (BnBr) (1.85 mmol, 1.23 eq) and diluted aqueous NaOH (2.42 mmol, 1.61 eq, 0.68M) in CH₂Cl₂ (30 ml) was stirred for 24 h at rt. The organic phase was separated and washed once with water (30 ml) and dried (Na₂SO₄). The solvent was removed under reduced pressure to give the crude product, which was purified by chromatography on silica gel to yield monobenzylated glucopyranoside as major product.

o-Nitrobenzyl 2-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (8) and o-Nitrobenzyl 2,3-di-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (9)

A solution of glucopyranoside diol **3** (500 mg, 1.24 mmol) in CH_2Cl_2 was treated with BnBr, according to the general method A, to afford after chromatography (CH_2Cl_2) 2-*O*-monobenzyl glucopyranoside **8** (508 mg, 83%, *m.p.* 152–153 °C) and its regioisomer 3-*O*-monobenzyl glucopyranoside **9** (36 mg, 5%, *m.p.* 139–140 °C) both as white powders.

compound 8 $[\alpha]_{D}^{20} = -27^{\circ}$ (c = 1, CHCl₃). – IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3491, 3064, 3038, 2882, 1868, 1773, 1530, 1497. – UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 271 (3.36). – ¹H NMR (300 MHz, CDCl₃): δ /ppm = 3.42–3.62 (m, 3H, H-2, H-4, H-5), 3.78 (t, $J_{\text{gem.}} = 10.2$ Hz, 1H, H-6), 3.91 (t, $J_{3,2} = 8.9$ Hz, $J_{3,4} =$ 9.0 Hz, 1H, H-3), 4.39 (dd, $J_{6.5} = 4.9$ Hz, $J_{gem.} = 10.5$ Hz, 1H, H-6), 4.71 (d, $J_{1,2} = 7.7$ Hz, 1H, H-1), 4.84 (d, $J_{gem.} = 11.4$ Hz, 1H, OC<u>H</u>₂Ph), 4.97 (d, $J_{gem.} = 11.4$ Hz, 1H, OCH₂Ph), 5.13 (d, $J_{\text{gem.}} = 15.3 \text{ Hz}, 1\text{H}, \text{H-7}$), 5.33 (d, $J_{\text{gem.}} = 15.3 \text{ Hz}, 1\text{H}, \text{H-}$ 7), 5.45 (s, 1H, H-14), 7.27–7.52 (m, 11H, H-12, H-Ar), 7.59 (dt, $J_{11,10} = 7.9$ Hz, $J_{11,12} = 7.6$ Hz, $J_{11,13} = 1.2$ Hz, 1H, H-11), 7.86 (d, $J_{13,12} = 7.6$ Hz, 1H, H-13), 8.13 (dd, $J_{10,11} = 7.9$ Hz, $J_{10,12} = 1.2$ Hz, 1H, H-10). $-^{13}$ C NMR (75 MHz, CDCl₃): $\delta/\text{ppm} = 65.98 \text{ (d, C-5)}, 67.79 \text{ (t, C-7)}, 68.44 \text{ (t, C-6)}, 73.31$ (d, C-3), 74.93 (t, O<u>C</u>H₂Ph), 80.24 (d, C-4), 81.81 (d, C-2), 101.64 (d, C-14), 102.85 (d, C-1), 124.64 (d, C-10), 126.09, 127.80, 127.87, 128.01, 128.13, 128.35, 128.52 and 129.06 (d, C-Ar), 133.63 (s, C-Ar), 133.92 (d, C-Ar), 136.77 (s, C-Ar), 137.90 (s, C-Ar), 146.84 (s, C-9). - MS (FAB/NBA): m/z (%) = 494 (8) [M⁺ + H], 493 (2) [M⁺], 341 (7) [(M⁺ + H) $-C_7H_7NO_3$, 329 (12), 307 (12), 289 (8), 176 (34), 153 (36) $[C_7H_7NO_3^+]$, 136 (100) $[C_7H_6NO_2^+]$, 107 (38) $[C_7H_7O^+]$, 91 (80) [C₇H₇⁺], 77 (32), 63 (12). $C_{27}H_{27}NO_8$ calcd.: C 65.71 H 5.51 N 2.84 (493.51) found: C 65.68 H 5.38 N 2.66.

compound 9 [α]_D²⁰ = -32° (c = 1, CHCl₃) – IR (KBr): $\bar{\nu}$ /cm⁻¹ = 3087, 3062, 3032, 2906, 2872, 1612, 1528, 1498. – UV (MeOH): $\lambda_{\text{max/mm}}$ (lg ε) = 271 (3.06). – ¹H NMR (300 MHz, CDCl₃): δ /ppm = 3.47–3.55 (m, 1H, H-5), 3.69 (t, $J_{2,1}$ = 7.8 Hz, $J_{2,3}$ = 8.2 Hz, 1H, H-2), 3.78–3.92 (m, 3H, H-3, H-4, H-6), 4.45 (dd, $J_{6,5}$ = 5.0 Hz, $J_{\text{gem.}}$ = 10.4 Hz, 1H, H-6), 4.74 (d, $J_{1,2}$ = 7.8 Hz, 1H, H-1), 4.89 (d, $J_{\text{gem.}}$ = 11.4 Hz, 1H, OCH₂Ph), 4.96 (s, 1H, OCH₂Ph), 4.97 (s, 1H, OCH₂Ph), 5.03 (d, $J_{\text{gem.}} = 11.4$ Hz, 1H, OC<u>H</u>₂Ph), 5.19 (d, $J_{\text{gem.}} = 15.6$ Hz, 1H, H-7), 5.38 (d, $J_{\text{gem.}} = 15.6$ Hz, 1H, H-7), 5.65 (s, 1H, H-14), 7.33–7.60 (m, 17H, H-11, H-12, H-Ar), 7.92 (d, $J_{13,12} = 1.4$ 7.7 Hz, 1H, H-13), 8.15 (dd, $J_{10,11} = 8.1$ Hz, $J_{10,12} = 1.3$ Hz, 1H, H-10). $-{}^{13}$ C NMR (75 MHz, CDCl₃): δ /ppm = 65.98 (d, C-5), 67.73 (t, C-7), 68.56 (t, C-6), 75.00 (t, OCH₂Ph), 75.45 (t, OCH₂Ph), 80.97 (d, C-3), 81.42 (d, C-4), 81.98 (d, C-2), 101.02 (d, C-14), 103.08 (d, C-1), 124.65 (d, C-10), 125.89 (d, C-11), 127.55, 127.64, 127.92, 127.94, 128.12, 128.16, 128.18, 128.21 and 128.24 (d, C-Ar), 128.49 (d, C-13), 128.83 (d, C-Ar), 134.17 (d, C-12), 137.16, 138.06 and 138.31 (s, C-8 and C-Ar), 146.78 (s, C-9). – MS (CI/NH₃, 160 °C): m/z (%) = 584 (38) [M⁺ + H], 583 (100) [M⁺], 493 (6) [(M⁺ + H) – C_7H_7], 491 (6), 339 (12) [(M⁺ – $C_7H_7NO_3) – C_7H_7$], 328 (10), $249(6)[(M^+ + H) - C_7H_7NO_3) - 2C_7H_7]$, 209(12), 147 (14), 136 (12) [C₇H₇O⁺], 79 (28). $C_{34}H_{33}NO_8$ calcd.: C 69.97 H 5.70 N 2.40 (583.63)found: C 69.82 H 5.59 N 2.31.

Phenyl 2-O-benzyl-4,6-O-benzylidene-\beta-D-glucopyranoside (10)

A solution of the glucopyranoside diol (4) (500 mg, 1.45 mmol) in CH₂Cl₂ was treated with BnBr, according to the general method A, to afford after chromatography $(CH_2Cl_2/$ EtOAc, 98:2) 2-O-monobenzyl glucopyranoside 10 (455 mg, 72%, m.p. 138–139 °C) as a white powder, along with a negligible amount of a less polar product. The less polar product is probably phenyl 2,3-di-O-benzyl-4,6-O-benzylidene- β -Dglucopyranoside [18] and was not further characterized. - $[\alpha]_{D}^{20} = -24^{\circ}$ (c = 1, CHCl₃). – IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3467, 3061, 3036, 2900, 2878, 1728, 1598, 1595, 1491, 1454. – UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 268 (3.22). – ¹H NMR (200 MHz, CDCl₃): δ/ppm = 3.53-4.02 (m, 5H, H-2, H-3, H-4, H-5, H-6), 4.43 (dd, $J_{6,5} = 4.5$ Hz, $J_{gem.} = 10.4$ Hz, 1H, H-6), 4.90 (d, $J_{gem.} = 11.3$ Hz, 1H, OCH₂Ph), 5.09 (d, $J_{gem.} = 11.3$ Hz, 1H, OCH₂Ph), 5.19 (d, $J_{1,2} = 7.6$ Hz, 1H, H-1), 5.59 (s, 1H, H-7), $J_{2,2,2,3,5} = 1.5$ 7.30-7.58 (m, 15H, H-Ar). - ¹³C NMR (50 MHz, CDCl₂): $\delta/\text{ppm} = 66.70 \text{ (d, C-5)}, 69.10 \text{ (t, C-6)}, 73.69 \text{ (d, C-3)}, 75.48$ (t, OCH₂Ph), 80.63 and 82.00 (d, C-2 and C-4), 102.15 (d, C-7), 102.30 (d, C-1), 117.28, 123.57, 126.49, 126.76, 128.51, 128.70, 128.75, 128.79, 128.93, 129.02, 129.73 and 130.05 (d, C-Ar), 137.37, 138.40 and 157.38 (s, C-Ar). - MS (DCI/ NBA): m/z (%) = 435 (100) [M⁺ + H], 391 (10), 358 (12), 341 (6), 250 (28), 235 (20) [M⁺ – C₇H₇ – C₇H₈O], 183 (16), 168 (14) 125 (14), 106 (66). calcd.: C 71.88 $C_{26}H_{26}O_{6}$ H 6.03 (434.49)found: C 71.70 H 6.10.

Benzyl 2-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (11) and Benzyl 3-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (12)

A solution of glucopyranoside diol **5** (2.00 g, 5.58 mmol) in CH_2Cl_2 was treated with BnBr, according to the general method A, to afford after chromatography (CH_2Cl_2) 2-*O*-monobenzyl glucopyranoside **11** [14] and its regioisomer 3-*O*-monobenzyl glucopyranoside **12** [15] (1.84 g together, 74%) as a white powder, which could not be separated by chromatography on silica gel. However, on the basis of their intensities, these signals could be assigned to the monobenzylated regioisomers **11** and **12** present in a 3:1 ratio. A negligible amount of a less polar product could also be detected by t.l.c.. The less polar product is probably benzyl 2,3-di-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside [19, 20] and was not further characterized.

compounds 11 and 12 ¹H NMR (200 MHz, CDCl₃): δ /ppm = ¹H NMR (200 MHz, CDCl₃): δ /ppm = 2.69 (br. s., 2H, OH from 11 and 12), 3.42-3.94 (m, 10H, H-2, H-3, H-4, H-5 and H-6 from 11, H-2, H-3, H-4, H-5 and H-6 from 12), 4.45 (dd, $J_{6,5} = 4.8$ Hz, $J_{\text{gem.}} = 10.4$ Hz, 2H, H-6 from **11** and **12**), 4.57 $(\mathbf{d}, J_{1,2} = 6.0 \text{ Hz}, 1\text{H}, \text{H-1 from 12}), 4.68-5.11 (m, 9\text{H}, \text{H-1})$ and OCH_2Ph from 11, OCH_2Ph from 12), 5.59 (s, 1H, H-7 from 11), 5.64 (s, 1H, H-7 from 12), 7.30-7.59 (m, 30H, H-Ar from 11 and 12) – ¹³C NMR (50 MHz, CDCl₃): δ /ppm = 66.60 (d, C-5 from 11), 66.91 (d, C-5 from 12), 69.20 (t, C-6 from 11 and 12), 71.80 (t, OCH₂Ph anomeric center from 12), 71.99 (t, OCH_2Ph anomeric center from 11), 73.66 (d, C-3) from 11), 74.82 (d, C-2 from 12), 75.06 (t, OCH₂Ph from 12), 75.34 (t, O<u>C</u>H₂Ph from **11**), 80.73 (d, C-4 from **12**), 80.94 (d, C-4 from 11), 81.80 (d, C-3 from 12), 82.36 (d, C-2 from 11), 101.73 (d, C-7 from 12), 102.24 (d, C-7 from 11), 102.74 (d, C-1 from 12), 103.22 (d, C-1 from 11), 126.54, 126.82, 128.23, 128.38, 128.49, 128.56, 128.60, 128.80, 128.89, 128.98, 129.48 and 129.69 (d, C-Ar from 11 and 12), 137.36 (s, C-Ar from 12), 137.51 and 137.55 (s, C–Ar from 11), 137.77 (s, C-Ar from 12), 138.69 (s, C-Ar from 11), 138.89 (s, C-Ar from **12**).

Methyl 2-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (13) and Methyl 3-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (14)

A solution of the glucopyranoside diol **6** (500 mg, 1.77 mmol) in CH₂Cl₂ was treated with BnBr, according to the general method A, to afford after chromatography (CH₂Cl₂) glucopyranosides **13** (369 mg, 56%, *m.p.* 125–126 °C; Lit. [13] 124–125 °C, Lit. [24] 124–125 °C, Lit. [23] 125–126 °C) and **14** (132 mg, 20%, *m.p.* 188–189 °C; Lit. [13] 184–185 °C, Lit. [24] 189–190 °C, Lit. [23] 190 °C) both as white powders, along with a negligible amount of a less polar product. The less polar product is probably methyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside [13, 23] and was not further characterized.

compound 13 $[\alpha]_{D}^{20} = -28^{\circ}$ (c = 1, CHCl₃); Lit. [13] $[\alpha]_{D}^{20} = -27^{\circ}$ (c = 1, CHCl₃), Lit. [24] $[\alpha]_{D}^{20} = -27.6^{\circ}$ (c = 1, CHCl₃), Lit. [24] $[\alpha]_{D}^{20} = -27.6^{\circ}$ (c = 1, CHCl₃), Lit. [23] $[\alpha]_{D} = -26^{\circ}$ (c = 0.68, CHCl₃). $-^{1}$ H NMR (200 MHz, DMSO-d₆): δ /ppm = 3.18 (t, $J_{2,1} = 7.9$ Hz, $J_{2,3} = 8.3$ Hz, 1H, H-2), 3.40–3.56 (m, 2H, H-4, H-5), 3.47 (s, 3H, OCH₃), 3.62–3.79 (m, 2H, H-3, H-6), 4.25 (dd, $J_{6,5} = 3.5$ Hz, $J_{gem.} = 9.8$ Hz, 1H, H-6), 4.49 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.78 (s, 2H, OCH₂Ph), 5.60 (d, J = 5.7 Hz, 1H, OH-3), 5.62 (s, 1H, H-7), 7.28–7.49 (m, 10H, H-Ar). $-^{13}$ C NMR (50 MHz, DMSO-d₆): δ /ppm = 57.48 (q, OCH₃), 66.43 (d, C-5), 68.78 (t, C-6), 73.14 (d, C-3), 74.77 (t, OCH₂Ph), 81.53 (d, C-4), 83.57 (d, C-2), 101.57 (d, C-7), 104.99 (d, C-1), 127.24, 128.12, 128.35, 128.91 and 129.74 (d, C-Ar), 138.59 and 139.84 (s, C–Ar).

compound 14 $[\alpha]_D^{20} = -47^\circ$ (c = 1, CHCl₃); Lit. [13] $[\alpha]_D^{20} = -48^\circ$ (c = 1, CHCl₃), Lit. [24] $[\alpha]_D = -47.2^\circ$ (c = 1, CHCl₃), Lit. [23] $[\alpha]_D = -45.5^\circ$ (c = 0.88, CHCl₃). $-{}^1$ H NMR (200 MHz, DMSO-d₆): δ /ppm = 3.29–3.95 (m, 5H, H-2, H-3, H-

4, H-5, H-6), 3.43 (s, 3H, OCH₃), 4.25 (dd, $J_{6.5} = 4.6$ Hz, $J_{\text{gen.}} = 9.9$ Hz, 1H, H-6), 4.33 (d, $J_{1,2} = 7.6$ Hz, 1H, H-1), 4.80 (s, 2H, OC<u>H</u>₂Ph), 5.63 (d, J = 5.4 Hz, 1H, OH-2), 5.67 (s, 1H, H-7), 7.27–7.41 (m, 10H, H-Ar). – ¹³C NMR (50 MHz, DMSO-d₆): δ /ppm = 57.37 (q, OCH₃), 66.29 (d, C-5), 66.78 (t, C-6), 74.28 (t, O<u>C</u>H₂Ph), 74.58 (d, C-2), 81.25 (d, C-4), 81.72 (d, C-3), 100.94 (d, C-7), 105.28 (d, C-1), 126.82, 128.07, 128.32, 128.86, 128.95 and 129.60 (d, C-Ar), 138.56 and 139.92 (s, C-Ar).

Methyl 2-O-benzyl-4,6-O-benzylidene- α -D-glucopyranoside (15) and Methyl 3-O-benzyl-4,6-O-benzylidene- α -D-glucopyranoside (16)

A solution of the glucopyranoside diol **7** (500 mg, 1.77 mmol) in CH₂Cl₂ was treated with BnBr, according to the general method A, to afford after chromatography (CH₂Cl₂/EtOAc, 96:4) glucopyranosides **15** (330 mg, 50%, *m.p.* 131–132 °C; Lit. [13] 131–132 °C, Lit. [25] 130–131 °C) and **16** (185 mg, 28%, *m.p.* 187–188 °C; Lit. [13] 187–188 °C, Lit. [25] 186–187 °C) both as white powders, along with a negligible amount of a less polar product. This product is probably methyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene- α -D-glucopyranoside [13, 25] and was not further characterized.

compound 15 $[\alpha]_{D}^{20} = +34^{\circ}$ (c = 1, CHCl₃); Lit. [13] $[\alpha]_{D}^{20} = +35^{\circ}$ (c = 1, CHCl₃), Lit. [25] $[\alpha]_{D}^{20} = +33^{\circ}$ (c = 0.25). – ¹H NMR (200 MHz, DMSO-d₆): δ /ppm = 3.31–3.56 (m, 2H, H-2, H-4), 3.36 (s, 3H, OCH₃), 3.63–3.76 (m, 2H, H-5, H-6), 3.81–3.95 (m, 1H, H-3), 4.23–4.26 (m, 1H, H-6), 4.71 (d, $J_{\text{gem.}} = 12.0$ Hz, 1H, OCH₂Ph), 4.77 (d, $J_{\text{gem.}} = 12.0$ Hz, 1H, OCH₂Ph), 4.77 (d, $J_{\text{gem.}} = 12.0$ Hz, 1H, OCH₂Ph), 4.86 (d, $J_{1,2} = 3.4$ Hz, 1H, H-1), 5.54 (d, J = 5.2 Hz, 1H, OH-3), 5.64 (s, 1H, H-7), 7.33–7.54 (m, 10H, H-Ar). – ¹³C NMR (50 MHz, DMSO-d₆): δ /ppm = 55.64 (q, OCH₃), 63.17 (d, C-5), 69.08 (t, C-6), 70.16 (d, C-3), 72.84 (t, OCH₂Ph), 80.69 (d, C-2), 82.22 (d, C-4), 99.24 (d, C-1), 101.89 (d, C-7), 127.33, 128.30, 128.55, 128.91, 129.04 and 129.76 (d, C–Ar), 138.68 and 139.66 (s, C–Ar).

compound 16 $[\alpha]_{20}^{20} = +79^{\circ}$ (c = 1, CHCl₃); Lit. [13] $[\alpha]_{20}^{20} = +78^{\circ}$ (c = 1, CHCl₃), Lit. [25] $[\alpha]_{D}^{20} = +78^{\circ}$ (c = 0.25). – ¹H NMR (200 MHz, DMSO-d₆): δ /ppm = 3.25–3.76 (m, 5H, H-2, H-3, H-4, H-5, H-6), 3.35 (s 3H, OCH₃), 4.20–4.24 (m, 1H, H-6), 4.69 (d, $J_{1,2} = 3.0$ Hz, 1H, H-1), 4.78 (s, 2H, OC<u>H</u>₂Ph), 5.28 (d, J = 6.9 Hz, 1H, OH-2), 5.67 (s, 1H, H-7), 7.27–7.42 (m, 10H, H-Ar). – ¹³C NMR (50 MHz, DMSO-d₆): δ /ppm = 55.65 (q, OCH₃), 63.22 (d, C-5), 69.03 (t, C-6), 72.86 (d, C-2), 74.24 (t, OCH₂Ph), 79.23 and 81.77 (d, C-3 and C-4), 101.18 (d, C-7), 101.47 (d, C-1), 126.88, 128.03, 128.31, 128.83, 128.95 and 129.61 (d, C–Ar), 138.62 and 140.04 (s, C–Ar).

Esterification Reaction of Carboxylic Acids with Glucopyranoside Derivatives (General Method B)

A mixture of the suitably protected glucopyranoside, carboxylic acid, DCC and DMAP in dry CH_2Cl_2 was stirred at rt under Argon. After 24 h, the white precipitate (dicyclohexylurea) was filtered off. The solution was washed twice with water, dried (Na_2SO_4), filtered off, and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography on silica gel to afford the corresponding glucopyranoside ester. Benzyl 2-O-benzyl-3-O-(3,4,5-tri-O-benzylgalloyl)-4,6-Obenzylidene- β -D-glucopyranoside (**18**) and benzyl 3-O-benzyl-2-O-(3,4,5-tri-O-benzylgalloyl)-4,6-O-benzylidene- β -Dgluco-pyranoside (**19**)

A mixture of both regioisomers **11** and **12** (1.60 g, 3.57 mmol), 3,4,5-tri-*O*-benzylgallic acid (**17**) (1.90 g, 4.28 mmol), DCC (0.89 g, 4.28 mmol), DMAP (0.53 g, 4.28 mmol) in dry CH₂Cl₂ (50 ml), was stirred, according to the general method B, to afford after column chromatography (CH₂Cl₂/*n*-hexane, 96:4 vol.%) benzylidene acetals **18** (1.85 g, 60%, *m.p.* 141–142 °C) and **19** (0.78 g, 25%, *m.p.* 161–162 °C) both as faintly yellow powders.

compound 18 $[\alpha]_D^{20} = -24^\circ$ (c = 1.25, CH₂Cl₂). – IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3062, 3030, 2925, 2867, 1722, 1588, 1499, 1453, 1428, 1334, 1208, 1090, 1008, 737, 694. - UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 272 (3.50). – ¹H NMR (200 MHz, CDCl₂): $\delta/\text{ppm} = 3.70 - 4.02 \text{ (m, 4H, H-2, H-4, H-5, H-6), 4.55 (dd, }$ $J_{6,5} = 4.4$ Hz, $J_{\text{gem.}} = 10.1$ Hz, 1H, H-6), 4.72 (d, $J_{\text{gem.}} = 11.6$ Hz, 1H, OC<u>H</u>₂Ph at C-2), 4.86 (d, $J_{gem.} = 12.0$ Hz, 1H, OC<u>H</u>₂Ph at C-1), 4.90–4.97 (m, 2H, H-1, OC<u>H</u>₂Ph at C-2), 5.14 (d, $J_{\text{gem}} = 12.0 \text{ Hz}, 1\text{H}, \text{ OCH}_{2}\text{Ph} \text{ at C-1}, 5.23 \text{ (s, 4H, Gall OCH_2$ Ph at Gall-C-3 and Gall-C-5), 5.29 (s, 2H, Gall-OCH₂Ph at Gall-C-4), 5.63 (s, 1H, H-7), 5.72 (t, $J_{3,2} = 9.3$ Hz, $J_{3,4} =$ 9.3 Hz, 1H, H-3), 7.22–7.55 (m, 32H, H-Ar). – ¹³C NMR (50 MHz, CDCl₃): δ /ppm = 66.73 (d, C-5), 69.31 (t, C-6), 71.76 (t, Gall-O<u>C</u>H₂Ph at Gall-C-3 and Gall-C-5), 72.23 (t, O<u>C</u>H₂Ph at C-1), 73.95 (d, C-3), 74.92 (t, O<u>C</u>H₂Ph at C-2), 75.67 (t, Gall-O<u>C</u>H₂Ph at Gall-C-4), 79.35 (d, C-4), 80.04 (d, C-2), 101.90 (d, C-7), 103.70 (d, C-1), 110.06 (d, Gall-C-2 and Gall-C-6), 125.49 (s, Gall-C-1), 126.74, 127.43, 128.05, 128.52, 128.55, 128.73, 128.85, 129.10 and 129.55 (d, C-Ar), 137.26, 137.48, 137.54, 137.99 and 138.16 (s, C-Ar), 143.03 (s, Gall-C-4), 152.95 (s, Gall-C-3 and Gall-C-5), 165.54 (s, COOR). – MS (FAB/NBA): m/z (%) = 871 (21) $[M^+ + H]$, 870 (26) $[M^+]$, 763 (57) $[(M^+ + H] - C_7 H_8 O]$, 673 (21) $[M^+ - C_7 H_6 O - C_7 H_7]$, 461 (21), 423 (90) [3,4,5-tri-Obenzylgalloyl ($C_{28}H_{23}O_4^+$)], 327 (70), 91 (100) [$C_7H_7^+$]. C₅₅H₅₀NO₁₀ calcd.: C 75.85 H 5.79 (870.99) found: C 75.88 H 5.81.

compound 19 $[\alpha]_D^{20} = -3^\circ$ (c = 0.57, CH₂Cl₂) .- IR (KBr): $\bar{\nu}$ /cm⁻¹ = 3062, 3030, 2928, 2868, 1730, 1591, 1499, 1454, 1428, 1337, 1207, 1126, 1090, 1020, 746, 696. - UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 279 (4.04). – ¹H NMR (200 MHz, CDCl₃): δ /ppm = 3.55–3.66 (m, 1H, H-5), 3.88–4.04 (m, 3H, H-3, H-4, H-6), 4.54 (dd, $J_{6,5}$ = 4.8 Hz, $J_{\text{gem.}}$ = 10.4 Hz, 1H, H-6), 4.71 (d, $J_{\text{gem.}}$ = 12.5 Hz, 1H, OCH₂Ph at C-1), 4.73 (d, $J_{1,2}$ = 8.0 Hz, 1H, H-1), 4.77 (d, $J_{gem} = 11.8$ Hz, 1H, OCH₂Ph at C-3), 4.94 (d, $J_{gem} = 11.8$ Hz, 1H, OCH₂Ph at C-3), 4.94 (d, $J_{gem} = 11.8$ Hz, 1H, OCH₂Ph at C-3), 4.98 (d, $J_{gem} = 12.5$ Hz, 1H, OCH₂Ph at C-1), 5.20 (s, 4H, Gall OCH_2Ph at Gall-C-3 and Gall-C-5), 5.34 (s, 2H, Gall-OCH₂Ph at Gall-C-4), 5.49 (t, $J_{2,1} = 8.0$ Hz, $J_{2,3} = 8.2$ Hz, 1H, H-2), 5.73 (s, 1H, H-7), 7.11–7.68 (m, 32H, H-Ar). – ¹³C NMR (50 MHz, CDCl₃): δ/ppm = 66.83 (d, C-5), 69.25 (t, C-6), 70.99 (t, OCH2Ph at C-1), 71.74 (t, Gall-OCH2Ph at Gall-C-3 and Gall-C-5), 73.99 (d, C-2), 74.39 (t, OCH₂Ph at C-3), 75.62 (t, Gall-O<u>C</u>H₂Ph at Gall-C-4), 78.19 (d, C-4), 82.24 (d, C-3), 100.44 (d, C-1), 101.82 (d, C-7), 109.97 (d, Gall-C-2 and Gall-C-6), 125.31 (s, Gall-C-1), 126.59, 128.07, 128.35, 128.60, 128.69, 128.77, 128.85, 129.12, 129.17 and 129.61 (d, C-Ar), 137.20, 137.36, 137.81, 137.94 and 138.43 (s, C- Ar), 142.92 (s, Gall-C-4), 152.98 (s, Gall-C-3 and Gall-C-5), 165.10 (s, COOR). – MS (FAB/Glycerol + CF₃COOH): m/z (%) = 870 (1) [M⁺], 782 (13), 675 (94), 585 (24), 493 (12), 423 (75) [3,4,5-tri-*O*-benzylgalloyl (C₂₈H₂₃O₄⁺)], 331 (57), 304 (21), 271 (26), 241 (43), 91 (100) [C₇H₇⁺]. C₅₅H₅₀NO₁₀ calcd.: C 75.85 H 5.79 (870.99) found: C 75.80 H 5.79.

Benzyl 2-O-benzyl-3-O-(3,4,5-tri-O-benzylgalloyl)- β -D-glu-copyranoside (**20**)

To a stirred solution of the benzylidene acetal **18** (1.68 g, 1.94 mmol) in THF (20 ml) 20 ml of 2N HCl was added slowly at 60 °C. The mixture was stirred at 78 °C for 7 h. After cooling to rt the reaction mixture was quenched with saturated NaHCO₃, extracted 3 times with CH₂Cl₂ (60 ml). Drying of the combined organic extracts (Na_2SO_4) and evaporation under reduced pressure gave an oily residue. The crystallization of the oily residue (CH₂Cl₂/n-hexane) afforded the monoester 20 (1.30 g, 86%, m.p. 149–150 °C) as a white powder. – $[\alpha]_D^{20} = +39^\circ$ (c = 0.79, CH₂Cl₂). – IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3412, 3284, 3061, 3028, 2948, 2934, 2865, 2862, 1720, 1588, 1498, 1429, 1373, 1333, 1100, 1091, 736, 697. – UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 274 (4.00). – ¹H NMR (300 MHz, CDCl₃): δ /ppm = 3.46–3.51 (m, 1H, H-5), 3.59 (dd, $J_{2,1}$ = 7.9 Hz, $J_{2,3}$ = 9.2 Hz, 1H, H-2), 3.81-4.00 (m, 3H, H-4, H-6), 4.61 (d, $J_{\text{gem.}} = 11.7 \text{ Hz}, 1\text{H}, \text{OC}\underline{\text{H}}_2\text{Ph} \text{ at C-2}, 4.74 \text{ (d, } J_{1,2} = 7.9 \text{ Hz}, 1$ ^{gem.} H, H-1), 4.76 (d, $J_{gem.} = 11.9$ Hz, 1H, OCH₂Ph at C-1), 4.86 (d, $J_{gem.} = 11.7$ Hz, 1H, OCH₂Ph at C-2), 5.01 (d, $J_{gem.} = 11.9$ Hz, ĨH, OCH₂Ph at C-1), 5.11 (s, 4H, Gall-OCH₂Ph at Gall-C-3 and Gall-C-5), 5.22 (s, 2H, Gall-OCH₂Ph at Gall-C-4), 5.33 (t, $J_{3,2} = 9.2$ Hz, $J_{3,4} = 9.3$ Hz, 1H, H-3), 7.08–7.49 (m, 27H, H-Ar). $-^{13}$ C NMR (75 MHz, CDCl₃): δ /ppm = 62.13 (t, C-6), 69.62 (d, C-4), 70.99 (t, Gall-OCH₂Ph at Gall-C-3 and Gall-C-5), 71.54 (t, OCH₂Ph at C-1), 74.19 (t, OCH₂Ph at C-2), 74.99 (t, Gall-OCH₂Ph at Gall-C-4), 75.30 (d, C-5), 77.93 (d, C-3), 78.64 (d, C-2), 102.56 (d, C-1), 109.19 (d, Gall-C-2 and Gall-C-6), 124.39 (s, Gall-C-1), 127.41, 127.45, 127.57, 127.65, 127.68, 127.70, 127.72, 127.78, 127.88, 127.92, 127.99, 128.07, 128.11, 128.23, 128.29, 128.33, 128.35, 128.37, 128.41, 128.44, 128.48, 128.58, 128.59, 128.61 and 128.65 (d, C-Ar), 136.47, 137.09, 137.21 and 137.60 (s, C-Ar), 142.42 (s, Gall-C-4), 152.34 (s, Gall-C-3 and Gall-C-5), 166.54 (s, COOR). – MS (FAB/NBA): m/z (%) = 783 (25) $[M^+ + H]$, 782 (6) $[M^+]$, 693 (21), 692 (7) $[(M^+ + H) - C_7 H_7]$, $675 (20) [(M^+ + H) - C_7 H_8 O], 585 (20), 461 (21), 423 (40)$ [3,4,5-tri-O-benzylgalloyl (C₂₈H₂₃O₄⁺)], 369 (53), 333 (55), 304 (28), 185 (83), 93 (100), 91 (32) [C₇H₇⁺]. $C_{48}H_{46}NO_{10}$ calcd.: C 73.64 H 5.92 (782.88)found: C 73.60 H 5.97.

Benzyl 2-O-benzyl-3-O-(3,4,5-tri-O-benzylgalloyl)-4,6-O-[(S)-2,2',3,3',4,4'-hexabenzyloxydiphenoyl]- β -D-glucopyranoside (**22**)

A mixture of the glucopyranoside diol **20** (1.20 g, 1.53 mmol), 2,2',3,3',4,4'-hexabenzyloxy-6,6'-diphenic acid (**21**) (2.02 g, 2.30 mmol), DCC (0.96 g, 4.60 mmol), and DMAP (0.57 g, 4.60 mmol) in dry CH₂Cl₂ (35 ml) was stirred, according to general method B, to afford after column chromatography (CH₂Cl₂/*n*-hexane, 90:10) the triester **22** (846 mg, 34%, *m.p.* 91–93 °C) as a white powder. – $[\alpha]_{D}^{20} = -28^{\circ}$ (c = 0.31,

 CH_2Cl_2). – IR (KBr): $\tilde{\nu}/cm^{-1} = 3061, 3029, 2937, 2871, 1744,$ 1724, 1588, 1498, 1429, 1368, 1332, 1184, 1097, 737, 695. – UV (CH₂Cl₂): $\lambda_{\text{max/nm}}$ (lg ε) = 271 (4.36). – ¹H NMR (300 MHz, $CDCl_{3}^{-}$): $\delta/ppm = 3.83$ (dd, $J_{2,1} = 7.9$ Hz, $J_{2,3} = 9.2$ Hz, 1H, H-2), 4.17 (ddd, $J_{5,4} = 10.0$ Hz, $J_{5,6} = 1.7$ Hz, 6.1 Hz, 1H, 11. 11. 2), 11.7 (add, $J_{5,4}$ = 10.0 Hz, $J_{5,6}$ = 1.7 Hz, 0.1 Hz, 1H, H-5), 4.23 (d, J_{gem} = 13.0 Hz, 1H, H-6), 4.76 (d, J_{gem} = 11.7 Hz, 1 H, OCH₂Ph), 4.89 (d, $J_{1,2}$ = 7.9 Hz, 1H, H-1), 4.92– 5.32 (m, 20H, OCH₂Ph), 5.36 (d, J_{gem} = 11.7 Hz, 1H, OCH₂Ph), 5.42 (t, $J_{4,3}$ = 9.7 Hz, $J_{4,5}$ = 10.0 Hz, 1H, H-4), 5.50 (dd, $J_{6,5}$ = 6.1 Hz, J_{gem} = 13.0 Hz, 1H, H-6), 5.71 (t, $J_{3,2}$ = 9.2 Hz, $J_{3,4}$ = 9.7 Hz, 1H, H-3), 7.08 (s, 1H, HBDP-H-5 or HBDP-H-5'), 7.15 (s, 1H, HBDP-H-5 or HBDP H 5'), 7.02 HBDP-H-5'), 7.15 (s, 1H, HBDP-H-5 or HBDP-H-5'), 7.02-7.65 (m, 57H, H-Ar). – ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 63.39 (t, C-6), 70.42 (d, C-4), 70.96 and 71.06 (t, O<u>C</u>H₂Ph), 71.38 (d, C-5), 71.59 (t, OCH₂Ph), 74.07 (d, C-3), 74.28, 74.85, 75.01, 75.12, 75.39 and 75.43 (t, OCH₂Ph), 78.88 (d, C-2), 103.06 (d, C-1), 107.55 and 107.77 (HBDP-C-5 and HBDP-C-5'), 109.34 (d, Gall-C-2 and Gall-C-6), 123.36 (s, Gall-C-1), 123.50 and 124.60 (s, HBDP-C-1 and HBDP-C-1'), 127.36, 127.40, 127.46, 127.55, 127.63, 127.87, 127.90, 127.97, 127.99, 128.08, 128.12, 128.14, 128.19, 128.32, 128.34, 128.38, 128.43, 128.45, 128.48, 128.53, 128.55, 128.59 and 128.77 (d, C-Ar), 136.32, 136.36, 136.48, 136.88, 137.33, 137.35, 137.40, 137.48, 137.58 and 137.66 (s, C-Ar), 142.52, (s, Gall-C-4), 144.22 and 144.56 (s, HBDP-C-3 and HBDP-C-3'), 152.12, 152.31, 152.38, 152.56 and 152.58 (s, HBDP-C-2, HBDP-C-2', HBDP-C-4, HBDP-C-4', Gall-C-3 and Gall-C-5), 165.69 (s, Gall-COOR), 166.96 and 167.59 (s, HBDP-COOR).

C ₁₀₄ H ₈₈ NO ₁₈	calcd .:	C 76.83	H 5.46
(1625.82)	found:	C 76.85	H 5.49.

3-O-Galloyl-4,6-O-[(S)-2,2',3,3',4,4'-hexahydroxydiphenoyl]-D-glucopyranose (Gemin D) (1)

A suspension of triester 22 (250 mg, 0.15 mmol), Pd/C (0.10 g, 10%) and dry THF (15 ml) was first degased with Argon (3 times) to remove O_2 , and H_2 was conducted slowly through the reaction mixture for 24 h at room temperature. The reaction mixture was filtered through celite, and the celite was washed with a mixture of acetone/MeOH (80:20, 50 mL). The solvent was removed under reduced pressure to give an oily residue. The purification of the crude product was carried out by crystallization [MeOH/(acetone:CH₂Cl₂:n-hexane, 1:2:4)] to afford Gemin D (91 mg, 89%, m.p. >250 °C) as an anomeric mixture (α : β , 1.2:1) as a powder. – [α]_D²⁰ = +40 ° (c = 0.5, MeOH). – IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3432, 2938, 2827, 1727, 1620, 1449, 1356, 1235, 1028, 760, 593. – UV (CH₂Cl₂): $\lambda_{\text{max/nm}}$ (lg ε) = 278 (4.37). – ¹H NMR (300 MHz, acetone- $\tilde{d}_{\epsilon}/$ D₂O): δ /ppm = 3.58–3.85 (m, 5H, H-2 α , H-2 β , H-5 β , H-6 α , H⁻6β), 4.55 (dd, $J_{5\alpha,4\alpha} = 9.8$ Hz, $J_{5\alpha,6\alpha} = 6.5$ Hz, 1H, H-5α), 4.76 (d, $J_{1\beta,2\beta} = 7.0$ Hz, 1H, H-1β), 4.92 (t, $J_{4\alpha,3\alpha} = 9.9$ Hz, $J_{3\alpha 4\alpha} = 9.8$ Hz, 1H, H-3 α), 6.46, 6.47, 6.62 and 6.63 (s, 4H, HHDP-H-5 α , HHDP-H-5' α , HHDP-H-5 β and HHDP-H-5' β), 7.03 (s, 4H, Gall-H-2 α , Gall-H-2 β , Gall-H-6 α and Gall-H-6β). – ¹³C NMR (75 MHz, acetone-d₆/D₂O): δ/ppm = 64.15 (t, C-6 $\alpha/6\beta$), 67.40 (d, C-5 α), 71.55 (d, C-4 α), 71.66 (d, C- (4β) , 71.84 (d, C-5 β), 72.00 (d, C-2 α), 74.39 (d, C-3 α), 74.79

J. Prakt. Chem. 1999, 341, No. 2

 $(d, C-2\beta)$, 76.36 $(d, C-3\beta)$, 93.91 $(d, C-1\alpha)$, 98.68 $(d, C-1\beta)$, 108.08 and 108.29 (d, HHDP-C- $5\alpha/5\beta$ and HHDP-C- $5'\alpha/5'\beta$), 110.47 (d, Gall-C- $2\alpha/2\beta$ and Gall-C- $6\alpha/6\beta$), 116.11 (s, Gall-C-1 $\alpha/1\beta$), 121.13 and 121.21 (s, HHDP-C-1 $\alpha/1\beta$ and HHDP-C-1'α/1'β), 126.13, 126.15, 126.52 and 126.57 (s, HHDP-C- $6\alpha/6\beta$ and HHDP-C-6' $\alpha/6'\beta$), 136.58 and 136.74 (s, HHDP-C-3 $\alpha/3\beta$ and HHDP-C-3' $\alpha/3'\beta$), 139.34 and 139.37 (s, Gall- $C-4\alpha/4\beta$, 144.66, 144.69, 145.49, 145.85 and 146.04 (s, HHDP-C-2 $\alpha/2\beta$, HHDP-C-2' $\alpha/2'\beta$, HHDP-C-4 $\alpha/4\beta$, HHDP-C-4' α /4' β , Gall-C-3 α /3 β and Gall-C-5 α /5 β), 167.84, 168.03, 168.40, 168.46, 169.09 and 169.16 (s, HHDP-COORα/CO- $OR\beta$ and Gall-COOR α /COOR β). $C_{27}H_{22}O_{18} \cdot 7 H_2O$ calcd.: C 42.64 H 4.77 found: C 42.65 H 4.12. (760.57)

Benzyl 3-O-benzyl-2-O-(3,4,5-tri-O-benzylgalloyl)- β -D-glucopyranoside (23)

A solution of benzylidene acetal 19 (0.68 g, 0.78 mmol) in THF (9 ml) was treated with 2N HCl (9 ml), according to the procedure for the glucopyranoside diol 20, to give after crystallization (CH₂Cl₂/n-hexane) the 4,6-O-deprotected glucopyranoside 23 (0.50 g, 81%, m.p. 129-130 °C) as a white powder. – $[\alpha]_{D}^{20} = -4^{\circ} (0.55, CH_{2}Cl_{2})$. – IR (KBr): $\tilde{\nu}/cm^{-1} =$ 3423, 3409, 3062, 3031, 2926, 2875, 1723, 1588, 1499, 1454, 1427, 1335, 1204, 1100, 1038, 736, 696. - UV (MeOH): $\lambda_{\text{max/nm}}$ (lg ε) = 276 (3.94). – ¹H NMR (300 MHz, CDCl₃): $\delta/\text{ppm} = 3.44 - 3.47 \text{ (m 1H, H-5)}, 3.67 \text{ (t, } J_{3,2} = 9.1 \text{ Hz}, J_{3,4} =$ 9.2 Hz, 1H, H-3), 3.85-4.02 (m, 3H, H-4, H-6), 4.61-4.69 (m, 4H, H-1, OC<u>H</u>₂Ph), 4.88 (d, $J_{gem.} = 12.7$ Hz, 1H, OC<u>H</u>₂Ph), 5.14 (s, 4H, Gall-OC<u>H</u>₂Ph at Gall-C-3 and Gall-C-5), 5.24 (s, 2H, Gall-OC<u>H</u>₂Ph at Gall-C-4), 5.50 (t, $J_{2,1} = 8.0$ Hz, $J_{2,3} =$ 9.1 Hz, 1H, H-2), 7.14–7.51 (m, 27H, H-Ar). – ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 62.07 (t, C-6), 70.40 (d, C-4), 70.43 (t, OCH₂Ph), 71.16 (t, Gall-OCH₂Ph at Gall-C-3 and Gall-C-5), 73.50 (d, C-2), 74.36 (t, OCH₂Ph), 75.00 (t, Gall-O<u>C</u>H₂Ph at Gall-C-4), 75.33 (d, C-5), 81.97 (d, C-3), 99.51 (d, C-1), 109.39 (d, Gall-C-2 and Gall-C-6), 124.68 (s, Gall-C-1), 127.31, 127.33, 127.39, 127.61, 127.68, 127.79, 127.92, 128.03, 128.09, 128.19, 128.23, 128.37, 128.43 and 128.46 (d, C-Ar), 136.52, 136.91, 137.25 and 137.78 (s, C-Ar), 142.46 (s, Gall-C-4), 152.36 (s, Gall-C-3 and Gall-C-5), 164.65 (s, COOR). – MS (FAB/NBA): m/z (%) = 782 (10) $[M^+]$, 675 (50) $[M^+ - C_7 H_7 O]$, 585 (8), 461 (19), 423 (65) $[3,4,5-tri-O-benzylgalloyl (C_{28}H_{23}O_4^+)], 307 (66), 91 (100)$ $[C_7H_7^+].$

 $\begin{array}{ccc} C_{48}H_{46}NO_{10} & \text{calcd.:} & C \ 73.64 & H \ 5.92 \\ (782.88) & \text{found:} & C \ 73.57 & H \ 5.98. \end{array}$

Benzyl 3-O-benzyl-2-O-(3,4,5-tri-O-benzylgalloyl)-4,6-O-[(S)-2,2',3,3',4,4'-hexabenzyloxydiphenoyl]- β -D-glucopyranoside (**24**)

A mixture of glucopyranoside diol **23** (0.40 g, 0.51 mmol), diphenic acid derivative **21** (0.67 g, 0.77 mmol), DCC (0.32 g, 1.53 mmol), and DMAP (0.19 g, 1.53 mmol) in dry CH₂Cl₂ (12 ml) was stirred, according to the general method B, to afford after column chromatography (CH₂Cl₂/*n*-hexane, 90:10) the triester **24** (247 mg, 33%, *m.p.* 128–129 °C) as a white powder. $-[\alpha]_D^{20} = -15^\circ$ (c = 0.18, CH₂Cl₂). - IR (KBr): $\bar{\nu}$ /cm⁻¹ = 3061, 3029, 2931, 2874, 1745, 1588, 1498, 1428, 1368, 1331, 1184, 1097, 738, 695. - UV (CH₂Cl₂): $\lambda_{max/mm}$

 $(\lg \varepsilon) = 272 (4.34). - {}^{1}H NMR (300 MHz, CDCl_{3}): \delta/ppm =$ 3.96–4.04 (m, 2H, H-3, H-5), 4.61 (d, $J_{\text{gem}} = 13.0$ Hz, 1H, H-6), 4.64–4.74 (m, 2H, H-1, OCH₂Ph), 4.88–5.36 (m, 22H, H-6, OC<u>H</u>₂Ph), 5.42 (t, $J_{4,3} = 9.8$ Hz, $J_{4,5} = 9.8$ Hz, 1H, H-4), 5.54 (t, $J_{2,1} = 8.0$ Hz, $J_{2,3} = 9.0$ Hz, 1H, H-2), 6.86 (s, 1H, HBDP-H-5 or HBDP-H-5'), 7.07 (s, 1H, HBDP-H-5 or HBDP-H-5'), 7.09–7.59 (m, 57H, H-Ar). – ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 63.47 (t, C-6), 70.28, 71.11 and 71.15 (t, O<u>C</u>H₂Ph), 71.58 (d, C-4), 71.68 (d, C-5), 72.77 (t, O<u>C</u>H₂Ph), 73.39 (d, C-2), 74.93, 75.02 and 75.45 (t, O<u>C</u>H₂Ph), 78.96 (d, C-3), 99.71 (d, C-1), 107.74 and 107.82 (d, HBDP-C-5 and HBDP-C-5'), 109.31 (d, Gall-C-2 and Gall-C-6), 123.22 (s, Gall-C-1), 124.36 and 124.54 (s, HBDP-C-1 and HBDP-C-1'), 127.30, 127.39, 127.44, 127.56, 127.62, 127.75, 127.79, 127.84, 127.90, 127.93, 128.00, 128.10, 128.15, 128.28, 128.30, 128.36, 128.40, 128.50 and 128.68 (d, C-Ar), 136.30, 136.37, 136.49, 136.61, 137.23, 137.33, 137.40, 137.46, 137.54 and 137.86 (s, C-Ar), 142.43 (s, Gall-C-4), 144.33 and 144.80 (s, HBDP-C-3 and HBDP-C-3'), 152.17, 152.32, 152.36, 152.39 and 152.55 (s, HBDP-C-2, HBDP-C-2', HBDP-C-4, HBDP-C-4', Gall-C-3 and Gall-C-5), 164.22 (s, Gall-COOR), 166.36 and 166.80 (s, HBDP-COOR). $C_{104}H_{88}NO_{18}$ calcd.: C 76.83 H 5.46 (1625.82)found: C 76.84 H 5.50.

2-O-Galloyl-4,6-O-[(S)-2,2',3,3',4,4'-hexahydroxydiphenoyl]-D-glucopyranose (hippomanin A) (2)

A suspension of the triester 24 (160 mg, 0.10 mmol), Pd/C (0.09 g, 10%) in dry THF (10 ml) was treated with H₂, according to the procedure for Gemin D (1), to afford after crystallization [MeOH/(acetone:CH₂Cl₂:n-hexane, 1:2:4)] hippomanin A (2) (59 mg, 88%, m.p. >250 °C) as an anomeric mixture ($\alpha:\beta$, 1.3:1) as a powder. $- [\alpha]_D^{20} = +60^\circ$ (c = 0.5, MeOH) .– IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3417, 2964, 1727, 1621, 1449, 1349, 1261, 1230, 1096, 1024, 800, 696. - UV (CH₂Cl₂): $\lambda_{\text{max/nm}}$ (lg ε) = 278 (4.15). – ¹H NMR (200 MHz, acetone d_6/D_2O): $\delta/ppm = 3.71-4.52$ and 4.85-5.04 (2m, 10H, H- 2α , \tilde{H} - 2β , H- 3α , H- 3β , H4 α , H- 4β , H- 5α , H- 5β , H- 6α , H-6β), 4.88 (d, $J_{1\beta,2\beta}$ = 7.8 Hz, 1H, H-1β), 5.20 (dd, $J_{6\alpha/6\beta,5\alpha/5\beta}$ = 6.5 Hz, $J_{\text{gem.}}$ = 12.7 Hz, 2H, H-6α, H-6β), 5.43 (d, $J_{1\alpha,2\alpha}$ = 3.5 Hz, 1H, H-1α), 6.55, 6.56, 6.64 and 6.67 (s, HHDP-H- 5α , HHDP-H-5' α , HHDP-H- 5β and HHDP-H- $5'\beta$), 7.13 and 7.15 (s, 4H, Gall-H-2 α , Gall-H-2 β , Gall-H-6 α and Gall-H-6β). – ¹³C NMR (75 MHz, acetone-d₆/D₂O): δ/ppm = 63.49 $(t, C-6\alpha/6\beta), 66.61, 69.74, 71.47, 72.41, 72.74, 74.65$ and 76.06 (d, C-2 α , C-2 β , C-3 α , C-3 β , C-4 α , C-4 β , C-5 α and C- 5β), 90.49 (d, C-1 α), 95.88 (d, C-1 β), 107.41 and 107.66 (d, HHDP-C-5 $\alpha/5\beta$ and HHDP-C-5' $\alpha/5'\beta$), 109.88 (d, Gall-C- $2\alpha/2\beta$ and Gall-C-6 $\alpha/6\beta$), 116.07, 116.27, 120.35 and 120.77 (s, HHDP-C-1 $\alpha/1\beta$, HHDP-C-1' $\alpha/1'\beta$, Gall-C-1 $\alpha/1\beta$), 125.59 and 125.92 (s, HHDP-C- $6\alpha/6\beta$ and HHDP-C- $6'\alpha/6'\beta$), 136.27 and 136.51 (s, HHDP-C- $3\alpha/3\beta$ and HHDP-C- $3'\alpha/3'\beta$), 138.95 and 139.12 (s, Gall-C-4 $\alpha/4\beta$), 144.47, 144.99 and 145.59 (s, HHDP-C-2 $\alpha/2\beta$, HHDP-C-2' $\alpha/2'\beta$, HHDP-C-4 $\alpha/4\beta$, HHDP-C-4' α /4' β , Gall-C-3 α /3 β and Gall-C-5 α /5 β), 166.65, 166.97, 168.62, 168.89 and 169.08 (s, HHDP-COOR α /COOR β and Gall-COOR α /COOR β).

 $\begin{array}{ccc} C_{27}H_{22}O_{18}\cdot 7 \ H_2O & calcd.: \ C \ 42.64 & H \ 4.77 \\ (760.57) & found: \ C \ 42.65 & H \ 4.07. \end{array}$

References

- T. Yoshida, Y. Maruyama, T. Okuda, M. Usman Memon, T. Shingu, Chem. Pharm. Bull. **1982**, *30* (11), 4245
- [2] T. Yoshida, Y. Maruyama, M. U. Memon, T. Shingu, T. Okuda, Phythochemistry. 1985, 1041
- [3] K. V. Rao, Planta Medica 1974, 25, 166
- [4] S. Quideau, K. S. Feldman, Chem. Rev. **1996**, *96*, 475
- [5] T. Okuda, T. Yoshida, H. Nayeshiro, Chem. Pharm. Bull. 1977, 25, 1862
- [6] K. Miyamoto, N. Kishi, R. Koshiura, T. Yoshida, T. Hatano, T. Okuda, Chem. Pharm. Bull. 1987, 35, 814
- [7] A. J. Vlietinck, T. De Bruyne, S. Apers, L. A. Pieters, Planta Medica 1998, 64, 97
- [8] T. Hatano, T. Yoshida, T. Shingu, T. Okuda, Chem. Pharm. Bull. 1988, 36, 2925
- [9] S. Ho Lee, T. Tanaka, G. Nonaka, I. Nishioka, Phytochemistry 1989, 28, 3469
- [10] K. V. Rao, Lloydia 1977, 40, 169
- [11] G.-I. Nonaka, M. Harada, I. Nishioka, Chem. Pharm. Bull. 1980, 28, 685
- [12] J. M. Küster, I. Dyong, Liebigs Ann. Chem. 1975, 2179
- [13] P. J. Garegg, T. Iversen, S. Oscarson, Carbohydr. Res. 1976, 50, C12
- [14] Y. Hoffman, O. Theander, M. Lindberg, T. Norberg, Carbohydr. Res. 1985, 137, 265
- [15] T. B. Grindley, R. Thangarasa, Can. J. Chem. 1990, 68, 1007
- [16] U. Zehavi, B. Amit, A. Patchornik, J. Org. Chem. 1972, 37, 2281
- [17] K. S. Feldman, A. Sambandam, J. Org. Chem. 1995, 60, 8171
- [18] F. Micheel, A. Klemer, Chem. Ber. **1958**, *91*, 663
- [19] J. M. Petit, P. Sinay, Carbohydr. Res. 1978, 64, 9
- [20] A. K. Sen, N. Banerji, Jnd. J. Chem. 1989, 28B, 818
- [21] D. M. Hall, Carbohydr. Res. 1980, 86, 158
- [22] P. L. Barili, G. Berti, G. Catelani, C. Cini, F. D'Andrea, E. Mastrorilli, Carbohydr. Res. 1995, 278, 43
- [23] Y. Kondo, Agr. Biol. Chem. 1975, 39, 1879
- [24] K. J. Takeo, K. Shibata, Carbohydr. Res. 1984, 133, 147
- [25] A. G. M. Barrett, R. W. Read, D. H. R. Barton, J. Chem. Soc., Perkin Trans. 1 1980, 2184
- [26] K. Khanbabaee, K. Lötzerich, Liebigs Ann. Chem. 1997, 1571

Address for correspondence:

Dr. K. Khanbabaee

Fachbereich Chemie und Chemietechnik

der Universität-GH Paderborn

Warburger Str. 100

D-33098 Paderborn

Fax: Internat. code (0)5251-60-3245

E-mail: KKH@Chemie.uni-Paderborn.de